
electronic Journal of Computer Science and Information Technology (eJCSIT), Vol. 6, No. 1, 2016

J. Kunasaikaran and A. Iqbal, A Brief Overview of Functional Programming Languages 32

A Brief Overview of Functional Programming Languages

Jagatheesan Kunasaikaran1, Azlan Iqbal2
1ZALORA Malaysia, Jalan Dua, Chan Sow Lin, Kuala Lumpur, Malaysia

e-mail: jagatheesan@my.zalora.com
2College of Computer Science and Information Technology, Universiti Tenaga Nasional, Putrajaya Campus, Selangor, Malaysia

e-mail: azlan@uniten.edu.my

Abstract – Functional programming is an important
programming paradigm. It is based on a branch of
mathematics known as lambda calculus. In this article, we
provide a brief overview, aimed at those new to the field, and
explain the progress of functional programming since its
inception. A selection of functional languages are provided as
examples. We also suggest some improvements and speculate
on the potential future directions of this paradigm.

Keywords – functional, programming languages, LISP, Python;
Javascript,Java, Elm, Haskell

I. INTRODUCTION

Programming languages can be classified into the style of
programming each language supports. There are multiple
styles of programming which are generally known as
programming paradigms.

Figure 1: Differences between Procedural, Object-oriented and

Functional Programming Paradigms

Common programming paradigms are procedural, object-
oriented and functional. Figure 1 illustrates conceptually
the differences between the common programming
language paradigms [1]. Procedural and object-oriented
paradigms mutate or alter the data along program
execution. On the other hand, in pure functional style, the
data does not exist by itself or independently. A
composition of function calls with a set of arguments
generates the final result that is expected. Each function is
‘atomic’ as it only executes operations defined in it to the
input data and returns the result of the computation to the
‘callee’.

II. FUNCTIONAL LANGUAGES

Functional programming is based on mathematical logic.
Lambda calculus forms the basis for modern functional
programming languages. Lambda calculus was proposed by
Alonzo Church in the 1930s and is based on function
abstractions. Names and function applications are used to
generalize expressions and these are evaluated by giving the
names a value. There are a few properties of lambda
calculus that make it suitable to be used as a descriptor for
a programming language.

Firstly, in lambda calculus, only abstraction and
application is needed to describe a programming language.
Lambda calculus is independent of the order to evaluate the
expression. This makes it a useful tool to investigate the
effect of order independent evaluation in other
programming languages. Besides, lambda calculus is based
on strong proof techniques which make it applicable to the
description of lambda calculus in other languages. It is also
easy to implement because it is easy to understand [2].

There are a few key concepts in functional programming
[3, 4]. Immutability being one of them states that data and
the data structures managing the data do not change the data
once the data structure is created. A mutable data structure
can be changed along a program's execution cycle. This
makes it harder to keep track of the state of a program.
Immutability makes it easier to implement concurrent
programming as the core data structure can be shared freely
among the routines without having to consider the
possibility of the data being shared changing during the
execution of a routine [5].

Side effects is another key concept whereby in functional
programming languages there are no side-effects to a
function call. This means that there is no mutation of any
global state during the function call. In some functional
programming languages, the lack of side-effects is further
strengthened by the fact that there are no variables or

Code

Data

Procedural Languages

Data

Computation
involves code
operating on
data

Object-Oriented Languages

=
An object encapsulates
both code and data.
Computation involves
objects interacting
with each other.

(Pure) Functional Languages

=

Code
(Functions)

Data has no
independent existence.
Computation involves
data flowing through
functions.

Code
and
Data

Data flow

electronic Journal of Computer Science and Information Technology (eJCSIT), Vol. 6, No. 1, 2016

J. Kunasaikaran and A. Iqbal, A Brief Overview of Functional Programming Languages 33

assignments. Since no variables exist, there is no possibility
of side effects.

The concept of ‘purity’ is also heavily explored in a
functional programming language. A pure function only
accepts a value and returns a value. Pure functions do not
rely on any global states. As a direct consequence of
functions being side-effect free and pure, a repeated call to
a function with the same arguments returns the same value
and this is known as referential transparency.

Referential transparency makes proofing and analyzing a
program’s execution to be easier and more understandable.
Lazy evaluation is a concept where the execution of a piece
of code is deferred until it is necessary to be computed. This
avoids unnecessary computation and allows the creation of
a theoretically infinite data structure. In a purely functional
programming language, programs are also made from the
composition of function applications. The result of a
function application becomes the parameter of another
function application.

The concept of composition where multiple functions are
combined to create a new function is also widely used in
functional programming languages. Functions can be
combined in different orders to create functions that yield a
different result. ‘Currying’ is also implemented in many
functional programming languages. Currying is a technique
of transforming functions that take multiple arguments into
a sequence of functions that accepts one argument at a time
[6]. This behavior allows for code implementations where
functions are given fewer arguments than the total number
of arguments that it accepts.

A. LISP

LISP, one of the earliest programming languages included
functional programming elements in it. LISP was invented
by the late John McCarthy in 1958. John McCarthy who
was at the time at Massachusetts Institute of Technology
published the design of the language in a paper entitled
“Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I” in the monthly journal of
Association for Computer Machinery (ACM),
Communications of the ACM. LISP has its fair share of
criticism as a functional language. In his book, “Let Over
Lambda – 50 Years of Lisp”, Doug Hoyte argued that LISP
is not functional [7].

The root of misconception according to him was the fact
that programmers began to associate LISP’s procedures
with functions, disregarding the mathematical definition of
a function which states that a function is a map from input
values to output values. Being one of the earliest
programming languages to implement procedures which
looked like functions, LISP was taken to be a programming
language that is functional. A LISP procedure can return
different values for each call to the procedure with the same
value for its arguments. This breaks away from the
characteristic of functional languages that is to be free of
side effects.

B. ML

The ML programming language was created in 1973. ML
stands for MetaLanguage. A few other functional languages

were also created around this time. Rob Burstall and John
Darlington developed the ‘New Programming Language’
(NPL) [8, 9]. ML further developed into a few dialects
namely Standard ML and Categorical abstract machine
language (Caml).

C. FP

In 1977, FP was presented by John Backus in his lecture
“Can Programming Be Liberated from the von
Neumann Style? A Functional Style and its Algebra of
Programs”. In his lecture, Backus compared functional
programs with programs based on the von Neumann style.
The von Neumann style program dominated the
development of programs during the time. In programming
languages based on Von Neumann’s architecture, the state
of the program is changed throughout its execution. This
change in state is known as mutation. Backus argued that
this concept created complex systems. Complex systems are
bigger in size which results in higher maintenance costs so
he put forwarded FP as an alternative [10].

D. Miranda

David Turner created the St. Andrews Static Language
(SASL) programming language at University of St.
Andrews in 1972. It formed the basis for the programming
language, Miranda, created also by him in 1985. Miranda
runs on the UNIX operating system and its goal was to be
a commercial supported standard non-strict purely
functional language [11]. Its source code is not available
freely as it was commercially licensed by Research
Software Limited of England.

E. Haskell

Haskell was formed by the mutual consensus of attendees
of the 1987 Functional Programming Languages and
Computer Architecture (FPCA) meeting. In this conference,
it was widely accepted that a common standard for the
development of a general purpose functional programming
language was needed. At the time, Miranda created by
David Turner was the closest to a full-fledged functional
programming language. However, Turner did not want
another dialect of the language. Hence, the committee
formed at the conference started designing the language
with the adoption of language features of Miranda that they
felt to be a good fit inside Haskell [12].

Haskell integrated various functional programming
concepts in it. Most notably, Haskell integrated the concept
of type classes and monads. Type classes were first
introduced inside Haskell. It is one of the most valuable
contributions of Haskell to the general programming
language design. Type classes allow for the definition of
generic functions that operate on different data types. This
is known as function composition. Monads can be
visualized as descriptions of computations that are
composable. Monads are usually used in Haskell to
encapsulate I/O operations which are considered impure.

electronic Journal of Computer Science and Information Technology (eJCSIT), Vol. 6, No. 1, 2016

J. Kunasaikaran and A. Iqbal, A Brief Overview of Functional Programming Languages 34

III. FUNCTIONAL CONCEPTS IN NON-FUNCTIONAL

LANGUAGES

The contribution from Haskell paved the way to modern
non-functional languages to adopt the functional
programming paradigm in their language core. Functional
features in non-functional languages usually do not strictly
impose that functions should be pure. They do allow side-
effects inside functions while giving and interface for
functional style programming. Python, Javascript, and Lua
supported first class functions since their inception.

A. Python

Functions such as “lambda”, “map”, “reduce” and “filter”
was introduced in Python in 1994 through the work of Amrit
Prem [13]. The lack of closures in Python initially caused a
problem when it came to referencing values of variables
outside of the lambda expression. Users that came from pure
functional programming languages perceived this as a
shortcoming in Python’s implementation as they believed a
lambda expression should behave as in pure functional
programming languages. Closures were introduced inside
Python in version 2.2 to address this problem.

Closures allow inner functions a reference of values to
variables surrounding it. Closures form the basis for the
implementation of syntaxes to support the decorator
software design pattern in Python [14]. Software design
patterns are reusable solutions that can be applied to solve
common programming problems. Decorator patterns are
essentially wrappers around functions that extend the
behavior of the function without changing the code inside
the functions. Python supports decorator patterns by using
the ‘@’ symbol as the syntax [15].

B. Lua

Lua is another non-functional programming language that
has implemented functional concepts in it. It was created in
1993 and functional programming concepts were
implemented in Lua 3.1 in 1998 [16]. Lua supports first-
class functions and higher order functions. First class
functions mean functions can be treated as any other data
type. Functions can be passed as an argument to another
function and be the return value also. Higher order functions
are functions that can accept functions as arguments and
return functions as the return value. The concept of higher
order functions enables composability in the language.

C. JavaScript

JavaScript is a web scripting language that is also widely
used in a non-browser environment which offers multiple
programming paradigm styles. It follows the ECMAScript
(ES) standardization. The language itself has first-class
functions and higher order functions. The built-in array data
type implements many functions that are functional. For
example, ‘map’, ‘filter’ and ‘reduce’ are functions
implemented for the array data type which does not mutate

the internal structure of the array. They return a new array
on each call.
Progress has been done in extending the language through
libraries. JavaScript has many libraries built to support
functional-style programming. For example, underscore.js,
lodash, and ramda are libraries written in JavaScript that
support the functional programming style. The former two
extends JavaScript’s existing features to provide a
functional flavored library to ease development.

Lodash has a separate module to support the functional
programming style. This module makes the arguments sent
to a function immutable. The original value of the argument
is not altered by calling the function. Functions are
automatically curried by using this module. The order of
arguments to a method is also changed to be ‘iteratee’ first
and data last [17]. Lodash gives the ability by using a
separate module to modify the behavior of existing
functions in it.

Ramda is focused on being close to the functional
programming style as the core library itself is built to
support this style by avoiding side-effects and mutability of
data [18]. Ramda introduces two major features. Functions
in Ramda are automatically curried. This means new
functions can be created by not supplying the final
parameters. Currying enables functions to be composed into
well-connected logic.

D. Java

Java is a general-purpose, concurrent, strongly-typed and
class-based object-oriented language [19]. Java 8 was
released in 2014 [20]. This version of Java brought with it
an upgrade to the existing Java programming model.
Functional interfaces were introduced in Java 8. Functional
interfaces are interfaces that only have one method that
needs to be implemented. Lambda expressions which are
also known as closures or anonymous methods were
introduced in Java 8. Lambda expressions implement the
functional interface and can be used to substitute code
blocks that expect anonymous inner class.

Functional interfaces can also be used for higher order
programming which includes function composition and
currying [21]. However, a lambda expression in Java does
not have the full characteristics of a lambda expression
implemented in a purely functional language. It is inspired
by the functional programming style while maintaining
Java’s behavior of nominative typing intact [22]. ‘Stream’
is another API introduced in Java 8. A stream is essentially
a consumable data structure that is passed from one
operation to another [23]. To visualize, a stream can be seen
as a pipeline where the data structure is passed from one
function to another.

This is akin to a functional programming construct where
the output from a function becomes an input to another
function. A stream in Java has two types of operations; it
can be either an intermediate or terminal operation. An
intermediate operation produces a new stream that is used
by the next operation in the pipeline. A terminal operation
is the last operation in the pipeline which may produce an
output. Java’s Collection API has also been upgraded with
new methods such as map, filter, sorted, match, count and
reduce to support stream operation [24].

electronic Journal of Computer Science and Information Technology (eJCSIT), Vol. 6, No. 1, 2016

J. Kunasaikaran and A. Iqbal, A Brief Overview of Functional Programming Languages 35

E. Elm

Elm is a functional language that compiles to JavaScript.
Elm was designed by Evan Czaplicki as his senior thesis
work. The first release of Elm was done in 2012 [25]. Elm
brings functional language constructs into web
programming. This provides multiple benefits. One is that
the risk of runtime errors is greatly reduced as Elm uses
type inference during compilation whereby the data type of
an expression is determined during compilation time itself.
Elm has data structures such as maybe, result, and ‘task’ to
handle errors. Task is an application of functional
programming inspired error handling to web application
problems. It can handle gracefully the problem of external
services such as the HTTP API not responding.

IV. POSSIBLE WEAKNESSES

Functional languages have their own disadvantages [26].
The flow of input and output is harder in a purely functional
language because of the purity of functions enforced by
functional languages. Interactive applications are harder to
develop as most interactive applications rely on using the
request and response method. In a purely functional
language like Haskell, a computation that performs I/O is
considered impure and needs constructs such as monads to
isolate these computations which may incur side-effects.

Programs that need to be run over a long time may be
challenging in a purely functional language as this usually
needs an unending or sentinel-controlled loop. Most
applications nowadays revolve around data which is
retrieved from a data source such as database or REST API.
This data is more easily represented in an object-oriented
language as objects than in functional languages. The
learning curve of functional programming languages is also
generally higher compared to imperative programming
languages.

V. POSSIBLE IMPROVEMENTS

Functional programming is gaining more visibility among
developers over time. Improvements are needed to integrate
functional programming concepts into existing languages
and frameworks. Better tooling is also needed to grow the
Haskell community. Tooling in the form of an integrated
development environment (IDE), plugins and command-
line tools need to be developed further to support the
growing ecosystem. In many companies the codebase is
created using imperative programming languages such as
Java. Changing these codebases to use a functional
programming language such as Haskell is difficult.

However, there are concepts in functional programming
languages that can be ported to these imperative languages
to allow developers to write more readable code that
produces fewer bugs. Functional programming languages
also need to be ported into more environments such as
embedded devices as these critical devices may benefit from
the features of functional languages which encourage the
writing of code that have fewer errors. Emphasis should be
given to teaching functional programming concepts and

languages in educational institutions. A firm grasp of these
concepts will add to a student’s knowledge of the available
methods to solve programming problems.

VI. FUTURE DIRECTIONS

In the years to come, functional programming languages
will play a more important role in software development.
More work will be done to integrate functional
programming concepts into existing programming
languages. This will be mostly driven in an open source
manner. The work will be focused on either developing a
module inside the existing programming language or
complementing the language via libraries as seen in Ramda.

Advances in bringing functional programming to various
platforms will also happen as seen in the case of Elm which
introduces functional programming in a web development
environment. Existing functional programming languages
such as Haskell which is mostly used in the academic
domain is expected to make further headways in industrial
applications.

ACKNOWLEDGEMENT

I would like to thank my co-author, Dr. Mohammed Azlan
Bin Mohamed Iqbal for his guidance that has been of
immense help in the writing of this paper.

REFERENCES

[1] R. C. Bjork, “LISP.” [Online]. Available: http://www.math-

cs.gordon.edu/courses/cs323/LISP/lisp.html. [Accessed: 04-
Sep-2016].

[2] G. Michaelson, An introduction to functional programming
through lambda calculus. Courier Corporation, 2011.

[3] Aleksandar, “Functional programming - HaskellWiki.”
[Online]. Available:
https://wiki.haskell.org/index.php?title=Functional_programmi
ng&oldid=59163. [Accessed: 04-Sep-2016].

[4] Sebastián Peyrott, “Introduction to Immutable.js and Functional
Programming Concepts,” 2016. [Online]. Available:
https://auth0.com/blog/intro-to-immutable-js/. [Accessed: 04-
Sep-2016].

[5] “Clojure - Concurrent Programming.” [Online]. Available:
http://clojure.org/about/concurrent_programming. [Accessed:
03-Sep-2016].

[6] “Currying - HaskellWiki,” 2016. [Online]. Available:
https://wiki.haskell.org/index.php?title=Currying&oldid=6051
0. [Accessed: 19-Sep-2016].

[7] D. Hoyte, Let Over Lambda : 50 years of lisp. Lulu.com, 2008.
[8] R. M. Burstall, “Design considerations for a functional

programming language,” Softw. Revolut., pp. 45–57, 1977.
[9] H. W. Loidl and R. Peña, Trends in Functional Programming:

13th International Symposium, TFP 2012, St Andrews, UK,
June 12-14, 2012, Revised Selected Papers. Springer Berlin
Heidelberg, 2013.

[10] J. Backus, “Can programming be liberated from the von
Neumann style?: a functional style and its algebra of programs,”
Commun. ACM, vol. 21, no. 8, pp. 613–641, 1978.

[11] “The Miranda Programming Language.” [Online]. Available:
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/mir
anda/miranda.html. [Accessed: 04-Sep-2016].

[12] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A
History of Haskell: Being Lazy With Class,” Proc. third ACM
SIGPLAN Conf. Hist. Program. Lang., pp. 12–55, 2007.

electronic Journal of Computer Science and Information Technology (eJCSIT), Vol. 6, No. 1, 2016

J. Kunasaikaran and A. Iqbal, A Brief Overview of Functional Programming Languages 36

[13] van R. Guido, “The History of Python: Origins of Python’s,”
2009. [Online]. Available: http://python-
history.blogspot.my/2009/04/origins-of-pythons-functional-
features.html. [Accessed: 10-Aug-2016].

[14] Ayman Farhat, “A guide to Python’s function decorators | The
Code Ship,” 2014. [Online]. Available:
http://thecodeship.com/patterns/guide-to-python-function-
decorators/. [Accessed: 19-Sep-2016].

[15] “PythonDecorators.” [Online]. Available:
https://wiki.python.org/moin/PythonDecorators. [Accessed:
22-Sep-2016].

[16] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The
Evolution of Lua,” in Proceedings of the 3rd ACM SIGPLAN
conference on History of programming languages, 2007, pp. 2–
1--2–26.

[17] “FP Guide.” [Online]. Available:
https://github.com/lodash/lodash/wiki/FP-Guide. [Accessed:
03-Sep-2016].

[18] “Ramda Documentation.” [Online]. Available:
http://ramdajs.com/0.22.1/index.html. [Accessed: 16-Aug-
2016].

[19] “Chapter 1. Introduction.” [Online]. Available:
https://docs.oracle.com/javase/specs/jls/se8/html/jls-1.html.
[Accessed: 04-Aug-2017].

[20] “Java 7 and Java 8 Releases by Date.” [Online]. Available:

https://www.java.com/en/download/faq/release_dates.xml.
[Accessed: 04-Sep-2016].

[21] Edwin Dalorzo, “Functional Programming with Java 8
Functions - DZone Java,” 2014. [Online]. Available:
https://dzone.com/articles/functional-programming-java-8.
[Accessed: 04-Sep-2016].

[22] Ben Evans, “How Functional is Java 8?,” 2014. [Online].
Available: https://www.infoq.com/articles/How-Functional-is-
Java-8. [Accessed: 04-Sep-2016].

[23] Lucas Jellema, “Java 8 - Collection enhancements leveraging
Lambda Expressions - or: How Java emulates SQL - AMIS
Oracle and Java Blog,” 2013. [Online]. Available:
https://technology.amis.nl/2013/10/05/java-8-collection-
enhancements-leveraging-lambda-expressions-or-how-java-
emulates-sql/. [Accessed: 04-Sep-2016].

[24] Benjamin Winterberg, “Java 8 Tutorial - Benjamin
Winterberg,” 2014. [Online]. Available:
http://winterbe.com/posts/2014/03/16/java-8-tutorial/.
[Accessed: 04-Sep-2016].

[25] “Release Notes.” [Online]. Available: http://elm-lang.org/blog.
[Accessed: 04-Sep-2016].

[26] J. Hunt, A Beginner’s Guide to Scala, Object Orientation and
Functional Programming. Springer International Publishing,
2014.

